
Chip Resistor Arrays CRB2A4E (Concave), CRC11A2E (Convex) Series

Miniature chip resistor arrays have 4 and 2 resistor elements integrated as a single component.

Features

- Miniature (2.0×1.0mm) Resistor Arrays Max. 60% space saving compared with the use of standard chip array (3.2×1.6mm)
- 0.5mm Termination pitch (Same as IC lead-pin pitch)
 Easy designing of pattern layout and improve electrical characteristics for curcuit
- * Please consult combination of different resistance type

CRB2A4E series (Concave Termination)

— CRC11A2E series (Convex Termination)

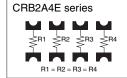
How to Order

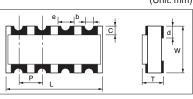
CRB2A 4E 103 J H 2 5

- ① Series (CRB2A: 2.0×1.0mm, concave termination, 4 elements) (CRC11A: 1.0×1.0mm, convex termination, 2 elements)
- ② Number of elements (4E: 4 elements) (2E: 2 elements)
- $\begin{array}{c} \text{(3) Resistance Value (3 digits numbering)} \\ 472 = 4.7 \text{k}\Omega, \ 103 = 10 \text{k}\Omega \\ 000 = 0\Omega \ \text{(Chip Jumper Array)} \end{array}$
- 4 Tolerance

J	±5%	Blank	Chip Jumper Array
---	-----	-------	-------------------

⑤ Packaging

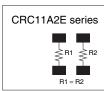

Code	Code Form		Packing unit	
Н	Taping	Paper	10000 pcs./ reel	

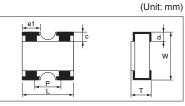

• 2mm pitch taping

• 4 element chip Resistors Array

• 2 element chip Resistors Array

Dimensions





Code	L	W	Т	Р	b
Dimensions	2.0 +0.10 -0.10	1.0 +0.10	0.4 +0.10	0.5 typ.	ф0.15 typ
Code	С	d	е		
Dimensions	0.2 +0.15 -0.15	0.25 +0.15 -0.15	0.25 typ.		

No marking on chips.

(Unit: mm)

Code	L	W	Т	Р
Dimensions	1.00 +0.10 -0.10	1.00 +0.10 -0.10	0.35 +0.05 +0.05	0.65 typ.
Code	С	d	e1	
Dimensions	0.20 +0.15 -0.15	0.20 +0.15 -0.15	0.33 +0.10 -0.10	

No marking on chips.

Rating

Chip resistor arrays		Chip jumper array		
Item Rating		Item	Rating	
Rated power (70°C)	1/32W/ element		1A	
Max. working * voltage	25V	Rated current		
Max. Over-load voltage	50V			
Resistance value	10 Ω to 1M Ω	Conductive	50m $Ω$ max.	
Tolerance	J: ±5%	resistance value	50III <u>C</u> 2 IIIax.	
Working Temperature	−55 to +125°C			
Number of elements	4E: 4 elements, 2E: 2 elements			

- * Rated Voltage: $\sqrt{\text{Rated power} \times \text{Resistance value}}$, whichever is less.
- * Standard Resistance Value: E-6 Series
- Please contact sales engineer for any other requirements of the nominal resistance value and the tolerance.

Chip Resistor Array/ CRB6A8E Series Chip Resistor Network/ RNA4A Series

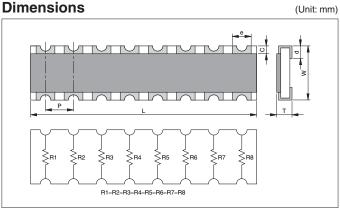
8 element chip Resistor Array/ CRB6A8E Series (Concave Termination)

Features

• Equal length conductors can be traced out from 0.8mm pitch termination

How to Order

CRB6A 8E 390 G U

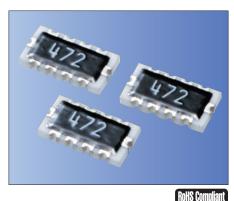

2 3 4 5 1

- 1 Series CRB6A
- ② Number of elements 8E = 8 elements
- (3) Resistance value 3 digits numbering
- 4 Tolerance

G ±2% J ±5%

⑤ Packaging

U Taping plastic 4,000 pcs./ reel


Code	Dimensions		
L	6.4±0.2		
W	1.6±0.2		
Т	0.6 <u>±</u> 0.1		
Р	0.8 typ.		
С	0.3 <u>±</u> 0.2		
d	0.4±0.15		
e (Top side)	0.5±0.1		
e (Bottom side)	0.4±0.15		

Rating

Chip Resis	stor Arrays	
Item	Rating	
Rated power (70°C)	1/ 16W/ element	
Max. working voltage*	50V	
Max. over-load voltage	100V	
Resistance value	10 Ω to 1M Ω	
Tolerance	G: ±2%, J: ±5%	
Working temperature	−55 to +125°C	
Number of elements	8E: 8 elements	

- * Rated Voltage: √Rated power × Resistance value, whichever is less.
- * Standard Resistance Value: E-6 Series
- * Please contact sales engineer for any other requirements of the nominal resistance value and the tolerance.

Chip Resistor Network/ RNA4A Series (Concave Termination)

Features

- Reduction in mounting costs & Process
- Save PCB space
- Eight resistors in one SMD package
- Reduction of inventory control costs

Applications

- Lap Top Computer Notebook Computer
- Printer
- CD ROM
- Hard Disk Drive

Facsimile

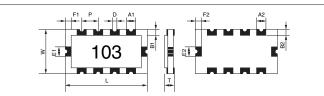
1 Series

2 Number of elements (8E: 8 elements)

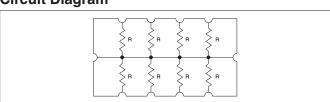
(2) (3) (4) (5)

3 Resistance code (3 digits)

RNA4A 8E 103 J U


- 4 Resistance tolerance (J: ±5%)
- ⑤ Packaging

How to Order


Plastic Taping, 4,000 pcs./ reel

* Taping Qty.: 4000 pcs./ 7 inch reel (4mm pitch) Carrier Tape: plastic

Dimensions

Circuit Diagram

• Nominal resistance value is all the same.

(Unit: mm) Code Dimensions

Code	Dimensions	
L	4.0±0.15	
W	2.1±0.15	
Т	0.6±0.1	
A 1	0.5±0.1	
B1	0.25±0.15	
E1	0.5±0.1	
F1	0.3±0.15	
D 0.3 typ.		
Р	0.8 typ.	
A2	0.4±0.1	
B2	0.4±0.15	
E2	0.5±0.1	
F2	0.35±0.15	

Specifications

Item	Rating	
Rated power (70°C)	1/ 16W (0.0625W)/ Element	
Max. working voltage*	25V	
Max. over-load voltage	50V	
Resistance value	100 Ω to 220K Ω	
Tolerance	J: <u>+</u> 5%	
Number of elements	8E: 8 elements	
Working temperature	−55 to +125°C	

- * Rated Voltage: √Rated power × Resistance value,
- whichever is less.
- * Standard Resistance Value: E-6 Series
- \ast If resistance value under 100 $\!\Omega$ is needed, please contact sales.

Test Conditions and Standards CRB, CRC Series

Electrical Characteristics

		Standard		Test Conditions	
Item		Resistor	Jumper	Resistor	Jumper
DC Resis	tance	Within Initial Tolerance 50mΩ max.		Power Contdition A (20°C, 65%RH)	
Temperature Characteristics		Resistance (Ω) TCR (ppm/ °C) R <10 −100 to +600 10≤ R ≤1M −250 to +250 1M R −500 to +300		Test Temperature: 25,125 (°C) $\Delta R/R = R_2 - R_1/R_1 \times 1/T_2 - T_1 \times 10^6$ $\Delta R/R$: Temp. Coefficient (ppm/ °C) T_1 : 25 (°C) T_2 : 125 (°C) R_1 : T_1 Resistance at (Ω) R_2 : T_2 Resistance at (Ω)	
Short-time	Δ R/ R	\pm (2.0%+0.10 Ω) max. of the initial value	50m $Ω$ max.	(1) Apply 2.5×rated voltage for 5 sec. (2) Wait 30 minutes (3) Measure resistance	(1) 2A for 5 sec. (2) Wait 30 minutes (3) Measure resistance
Overload	Visual	No evidence of mechanical damage intermittent overload			
Intermittent	Δ R/ R	\pm (5%+0.1 Ω) max. of the initial value	50m $Ω$ max.	(1) Perform 10000 voltage cycles as follows: ON (2.5×rated voltage) 1 sec. OFF 25 sec.	(1) Perform 10000 current cycles as follows: ON (2A) 1 sec.
Overload	Visual	No evidence of mechanical damage		(2) Stabilization time 30 min. without loading (3) Measure resistance	OFF 25 sec. (2) Wait 30 minutes (3) Measure resistance
Dielectric Withstanding Voltage Insulation Resistance		No evidence of mechanical damage $10^{8}\Omega \text{ min.}$		Apply 300VAC for 1 sec.	
				Apply 100V DC.	

Test Conditions and Standards CRB, CRC Series

Mechanical Characteristics

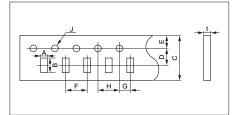
lkowo		Stan	dard	Test Co	nditions
Item		Resistor	Jumper	Resistor	Jumper
	∆R/ R	\pm (1%+0.05 Ω) max. of the initial value	50m $Ω$ max.	Apply the load as show: Measure resistance during	load application
Terminal Strength	Visual	No evidence of mechanion	cal damage after loading	Bending in 10 seconds PC board: Glass epoxy t=1.6	
Soldering Heat Resistance	ΔR/R	\pm (1%+0.05 Ω) max. of the initial value	50m $Ω$ max.	Immerse into molten solder at 260±5°C for 10±1 sec Stabillize component at room temperature for 1hr. Measure resistance.	
nesistance	Visual	No evidence	e of leaching	Wedsdre resistance.	
Solderability Coverag		Coverage≥95% ea	ch termination end	Immerse in Rogin Flux for SN62 solder at 235±5°C for	
Anti-Vibration Test	Δ R/R \pm (1%+0.1 Ω) max. of the initial value 50r		50m $Ω$ max.	2 hrs. each in X, Y and Z axis. (TTL 6hrs.) 10 to 55 Hz sweep in 1 min. at 1.5mm amplitude.	
lest	Visual	No evidence of mechanical damage			
Solvent Resistance	∆R/ R	\pm (0.5%+0.05 Ω) max. of the initial value	50m $Ω$ max.	Immerse in static state but for 30±5 sec.	yl acetate at 20°C to 25°C
Hesistance	Visual	No evidence of me	echanical damage	then measure value.	sin temperature for 60 min.

Environmental Characteristics

LIIVIIOIIIIE	illai Ciic	aracteristics						
Item		Stan	dard	Test Conditions				
item		Resistor Jumper		Resistor	Jumper			
Temperature Cycle		\pm (1%+0.05 Ω) max. of the initial value	50m $Ω$ max.	1) Run 5 cycles as follows: -55±3°C for 30 min. 125±3°C for 30 min. Room temp. for 10 to 15 min 2) Stabilize component at room temperature for 1hr then measure value.				
	Visual	No evidence of me	echanical damage					
Low Temperature	∆ R/ R	\pm (2%+0.1 Ω) max. of the initial value	50m $Ω$ max.	1) Dwell in -55°C chamber without loading for 1000 ⁴⁸ / ₁ hrs. 2) Stabilize component at room temperature for 1hr.				
Storage	Visual	No evidence of me	echanical damage	then measure value.				
High ∆R/ R Temperature		\pm (3%+0.1 Ω) max. of the initial value	50mΩ max.	Dwell in 125°C chamber without loading for 1000 ⁴⁶ / ₂ hrs. Stabilize component at room temperature for 1hr.				
Storage	Visual	No evidence of me	echanical damage	then measure value.				
Moisture Resistance	∆ R/ R	\pm (3%+0.1 Ω) max. of the initial value	50mΩ max.	1) Dwell in temp.: 65°C RH90 to 95%RH chawithout loading for 1000 100 hrs. 2) Stabilize component at room temperature				
nesistance	Visual	No evidence of me	echanical damage	then measure value.				
Life Test	∆R/ R	\pm (3%+0.1 Ω) max. of the initial value	50mΩ max.	1) Temp.: 70±3°C Voltage: (rated voltage) on 90 off 30 min. Duration: 1000 ¹⁴⁸ / ₄₀ hrs. 2) Stabilize component at room temperature for				
	Visual	No evidence of mo	echanical damage	then measure value.	noom temperature for mil.			
Loading Life in Moisture	ΔR/ R	\pm (3%+0.1 Ω) max. of the initial value	50mΩ max.	1) Temp.: 40±2°C RH: 90 to 95% Voltage Cycle: on 90 min. (rated voltage) off 30 min. Duration: 1000 ±48 hrs 2) Stabilize component at room temperature for 1hr.				
iii woisture	Visual	No evidence of mo	echanical damage	then measure value.	Toom temperature for Till.			

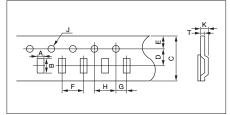
Thick Film Chip Resistors Tape & Reel

Tape & Reel


• Reel

(Unit: mm)

A W


Code	Α	В	С	D	E	W	t	R
Width: 8mm	117010	↓E0 min	112 O LO E	φ21.0±0.8	20105	10.0±1.5	2.5 max.	1.0
Width: 12mm	φ170±2.0	φου min.	φ13.0±0.5	φ∠1.0±0.8	∠.∪±0.5	13.0±1.5	Z.S IIIAX.	1.0

• Carrier Tape (8mm)

									(Unit: mm)			
Dimension Code		В	С	D	Е	F	G	Н	J	t			
0404	1.2±0.1	1.2±0.1				2.0±0.1				0.6 max.			
0804	1.25±0.2	2.25±0.2	8.0±0.2		0.0 0.5 10.05	2 5 1 0 05	2 5 10 05	1 75 0 1	2.0±0.1	2.0±0.05	4.0±0.1	φ1.5 ^{+0.1}	
0805	1.65±0.2	2.4±0.2		8.0±0.2 3.5±0.05	1.75±0.1	40.04	2.0±0.05	4.0±0.1	φ1.5 🗓	1.1 max.			
1206	2.0±0.2	3.6±0.2				4.0±0.1							

• Carrier Tape (12mm)

										(U	Jnit: mm)
Dimension Code		В	С	D	E	F	G	Н	J	Т	K
1020	2.9±0.2	5.3±0.2									
1608	2.5±0.2	4.4±0.2	12.0±0.3	0.3 5.5±0.05	5±0.05 1.75±0.1	40101	0.1 2.0±0.1	40104	14 5 +01	0.6 max.	1.4 max.
2512	3.5±0.2	6.7±0.2				4.0±0.1		4.0±0.1	φι.5 -0		
2506	2.0±0.2	6.9±0.2									

• Taping Quantity per reel

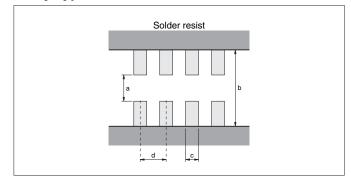
(Unit: pcs.)

TYPE	Series	φ 178 reel
0404	CRC11A2E, ATC1A	10000 (2mm pitch)
0804	CRB2A4E	10000 (2mm pitch)
0805	LR21	5000 (4mm pitch)
1206	LR32	5000 (4mm pitch)
1020	LR50	4000 (4mm pitch)
1608	RNA4A	4000 (4mm pitch)
2512	LR63	4000 (4mm pitch)
2506	CRB6A8E	4000 (4mm pitch)

Recommended Land Patterns

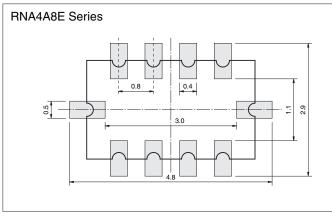
Recommended Land Patterns

Chip Type



c	
B A B	

EIA Size	Α	В	С
0805	1.0	0.8	1.2
1020	1.4	1.0	5.0
1206	2.2	0.9	1.5
2512	5.0	1.0	3.0


Array Type

Series	а	b	С	d
CRB2A4E	0.4	1.5	0.25	0.5
CRC11A2E	0.5	1.5	0.4	0.65
CRB6A8E	0.7	2.3	0.4	0.8
ATC1A	0.5	1.5	0.4	0.65

(Unit: mm)

Precautions

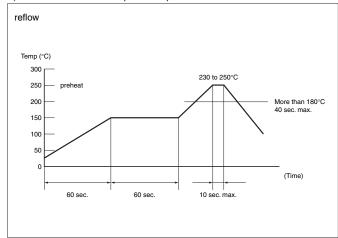
Circuit design

- Once application and assembly environments have been checked, the resistors may be used in conformance with the catalog and the specifications.
- 2) Please consult the manufacturer in advance when the resistors is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highy public orientated; and devices which demand a high standard of liability.
- Please use the resistors in conformance with the operating temperature provided in both the catalog and the specifications.
- Please keep voltage under the rated voltage which is applied to the resistor.
- 5) Do not use the resistor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications.
- 6) Please do not use the resistor in the following environments.
 - 1 State that water, oil, and solvent hang in resistor
 - 2 State where poisonous gas (sulfur and chlorine, etc.) exists
 - 3 State that direct sunshine, radiation, and ultraviolet, etc. are irradiated
- 7) There is a thing that resistance changes according to the stuff of the resin when the coating with the resin is given. Please use resin coating after confirming the characteristic.
- 8) There is a thing that resistance changes according to flux and cleaner.

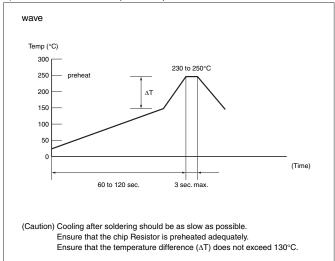
Please use flux and cleaner after confirming the characteristic.

9) Please consult about a lead free products.

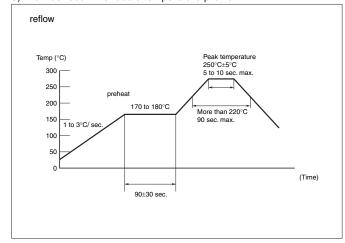
Storage


- 1) Keep storage place temperature +5 to +35°C, humidity 45 to 75%
- 2) Please keep parts out of poisonous gas such as sulfur or chlorine in the air and out of salty moisture, or they may cause rust of terminal and poor solderability. Please consider the abovementioned item after mounting.
- 3) Soldering iron

Temperature	soldering iron 300±5°C*		
Time	3 sec. max. *		


*Do not place the soldering iron on the chip. Soldering iron is 30W max.

Soldering method


1) Recommendable temperature profile

2) Recommendable temperature profile

3) Pb-free recommendable temperature profile

